A prototype AMSR-E global snow area and snow depth algorithm
نویسندگان
چکیده
A methodologically simple approach to estimate snow depth from spaceborne microwave instruments is described. The scattering signal observed in multifrequency passive microwave data is used to detect snow cover. Wet snow, frozen ground, precipitation, and other anomalous scattering signals are screened using established methods. The results from two different approaches (a simple time and continentwide static approach and a space and time dynamic approach) to estimating snow depth were compared. The static approach, based on radiative transfer calculations, assumes a temporally constant grain size and density. The dynamic approach assumes that snowpack properties are spatially and temporally dynamic and requires two simple empirical models of density and snowpack grain radius evolution, plus a dense media radiative transfer model based on the quasicrystalline approximation and sticky particle theory. To test the approaches, a four-year record of daily snow depth measurements at 71 meteorological stations plus passive microwave data from the Special Sensor Microwave Imager, land cover data and a digital elevation model were used. In addition, testing was performed for a global dataset of over 1000 World Meteorological Organization meteorological stations recording snow depth during the 2000–2001 winter season. When compared with the snow depth data, the new algorithm had an average error of 23 cm for the one-year dataset and 21 cm for the four-year dataset (131% and 94% relative error, respectively). More importantly, the dynamic algorithm tended to underestimate the snow depth less than the static algorithm. This approach will be developed further and implemented for use with the Advanced Microwave Scanning Radiometer—Earth Observing System aboard Aqua.
منابع مشابه
An investigation on the feasibility of applying MODIS snow cover products in cloudy weather by the employment of its integration with microwave images
Variation of snow cover area (SCA) in small to large scale catchment can be studied using MODIS snow products on daily to montly time step since the year 2000. However, one of the major problems in applying the MODIS snow products is cloud obscuration which limits the utilization of these products. In the current study, variation of SCA was investigated in Karoun basin, western part of Iran, us...
متن کاملA New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures
Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded ...
متن کاملA Comparison of AMSR-E/Aqua Snow Products with in situ Observations and MODIS Snow Cover Products in the Mackenzie River Basin, Canada
Since 2002, global snow water equivalent (SWE) estimates have been generated using Advanced Microwave Scanning Radiometer (AMSR-E)/Aqua data. Accurate estimates of SWE are important to improve monitoring and managing of water resources in specific regions. SWE and snow map product accuracy are functions of topography and of land cover type because landscape characteristics have a strong influen...
متن کاملSatellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches
Snow on Antarctic sea ice plays a key role for sea ice physical processes and complicates retrieval of sea ice thickness using altimetry. Current methods of snow depth retrieval are based on satellite microwave radiometry, which perform best for dry, homogeneous snow packs on level sea ice. We introduce an alternative approach based on in-situ measurements of total (sea ice plus snow) freeboard...
متن کاملFreeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data
In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 41 شماره
صفحات -
تاریخ انتشار 2003